

Recommendation for Repeat Consumption from User Implicit Feedback (Extended Abstract) Jun Chen*, Chaokun Wang, Jianmin Wang, Philip S. Yu *School of Software, Tsinghua University, Beijing 100084, P.R. China Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA

Motivations

- Repeat consumptions are more often than novel ones.
- Lack of study in repeat item recommendation.
- Temporal effect of implicit feedback is important.

Contributions

- Recommendation for repeat consumption (RRC).
- Time-sensitive personalized pairwise ranking model.
- Temporal behavioral feature extraction.

RRC Problem

[1] Our AAAI-15 paper: Will you reconsume the near past? fast prediction on short-term reconsumption behaviors

- Given current window W, recommend items from W to consume next.
- **Preliminary**: the next consumption is "known" to be repeat ^[1].

Time-Sensitive Personalized Pairwise Ranking (TS-PPR) Model

Temporal preference:

Probability: *u* prefers *v_i* more than v_i at time *t*:

$$\begin{aligned} r_{uvt} &= \mathbf{u}^{\top} \mathbf{v} + \mathbf{u}^{\top} \mathbf{A}_{u} \mathbf{f}_{uvt} = \mathbf{u}^{\top} (\mathbf{v} + \mathbf{A}_{u} \mathbf{f}_{uvt}) \\ p(v_{i} >_{ut} v_{j}) &= \sigma(r_{uv_{i}t} - r_{uv_{j}t}) \\ &= \sigma(\mathbf{u}^{\top} (\mathbf{v}_{i} + \mathbf{A}_{u} \mathbf{f}_{uv_{i}t} - \mathbf{v}_{j} - \mathbf{A}_{u} \mathbf{f}_{uv_{j}t})) \\ &= \sigma(\mathbf{u}^{\top} (\mathbf{v}_{i} - \mathbf{v}_{j} + \mathbf{A}_{u} (\mathbf{f}_{uv_{i}t} - \mathbf{f}_{uv_{j}t}))) \\ &= \frac{1}{1 + e^{-\mathbf{u}^{\top} (\mathbf{v}_{i} - \mathbf{v}_{j} + \mathbf{A}_{u} (\mathbf{f}_{uv_{i}t} - \mathbf{f}_{uv_{j}t}))}. \end{aligned}$$

In training, sample fixed number of negative v_i for each v_i w.r.t u and t.

Train with SGD:

Algorithm 1. Parameter Inference Algorithm				
Input:				
learning rate α , regularization parameters γ , λ .				
Output:				
transform matrix \mathbf{A}_u for each user u ,				

Features:

- Normalized item popularity
- Normalized item reconsumption ratio
- Recency feature
- Dynamic familiarity

The extracted behavioral features are highly related to repeat consumptions!

latent feature matrices U, V.

- 1: initialize $\mathbf{A}_u \sim N(\mathbf{0}, \lambda \mathbf{I}), \forall u, \mathbf{U}, \mathbf{V} \sim N(\mathbf{0}, \gamma \mathbf{I})$
- 2: repeat

Random 🖾

Recency

Survival

DYRC

TS-PPR

FPMČ

0.5

Pop

- uniformly draw a user u from user set \mathcal{U}
- uniformly draw a repeat consumption of u w.r.t. item v_i 4: at time t
- uniformly draw item v_j ($v_j \neq v_i$) from the time window of u at time t

6:
$$\mathbf{u}' \leftarrow (1 - \alpha \gamma)\mathbf{u} + \alpha(1 - p(v_i >_{ut} v_j))\frac{\partial}{\partial \mathbf{u}}(r_{uv_it} - r_{uv_jt})$$

7: $\mathbf{v}'_i \leftarrow (1 - \alpha \gamma)\mathbf{v}_i + \alpha(1 - p(v_i >_{ut} v_j))\frac{\partial}{\partial \mathbf{v}_i}(r_{uv_it} - r_{uv_jt})$
8: $\mathbf{v}'_j \leftarrow (1 - \alpha \gamma)\mathbf{v}_j + \alpha(1 - p(v_i >_{ut} v_j))\frac{\partial}{\partial \mathbf{v}_j}(r_{uv_it} - r_{uv_jt})$
9: $\mathbf{A}'_u \leftarrow (1 - \alpha \lambda)\mathbf{A}_u + \alpha(1 - p(v_i >_{ut} v_j))\frac{\partial}{\partial \mathbf{A}_u}(r_{uv_it} - r_{uv_jt})$
10: $\mathbf{u}, \mathbf{v}_i, \mathbf{v}_j, \mathbf{A}_u \leftarrow \mathbf{u}', \mathbf{v}'_i, \mathbf{v}'_j, \mathbf{A}'_u$
11: until \mathcal{J} convergence
12: return $\mathbf{A}, \mathbf{U}, \mathbf{V}$

Recommend by ranking with temporal preference r_{uvt}

- Datasets: Gowalla (repeat check-ins), Lastfm (repeat song listening).
- Superior accuracy performance of TS-PPR compared to baselines.
- Accuracy drops after eliminating any of the four extracted features.
- About 1ms time cost for a single recommendation with TS-PPR.

Combine TS-PPR with our previous work [1] towards a holistic recommender system for repeat consumptions.

Evaluation Combining STREC and TS-PPR					
Data Set	STREC	TS-PPR (on STREC correct classification)			
		MaAP@1	MaAP@5	MaAP@10	
Gowalla Lastfm	0.6912 0.8070	0.1343 0.0862	0.4487 0.2819	0.6314 0.4336	

IEEE International Conference on Data Engineering (ICDE-17, San Diego, USA). Contact: chenjun14@mails.thu.edu.cn, chaokun@mail.tsinghua.edu.cn.

Random 🖾

Recency

Survival

DYRC

FPMČ

TS-PPR

Pop 🚥

0.3

0.25

0.2