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Motivations

= Repeat consumptions are more often than novel ones.
= |_ack of study In repeat item recommendation.
= Temporal effect of implicit feedback Is important.

~

Contributions

= Recommendation for repeat consumption (RRC).
= Time-sensitive personalized pairwise ranking model.
= Temporal behavioral feature extraction.

[1] Our AAAI-15 paper: Will you reconsume the near past?
fast prediction on short-term reconsumption behaviors

RRC Problem

= Given current window W, recommend 1tems from W to consume next.

= Preliminary: the next consumption is “known” to be repeat 1.

the current window

Ly e STREC (Whether?)
RRC (What?)

the last window

O novel consumption . repeat consumption

Temporal preference:

Probability: u prefers v; more
than v; at time t:
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Features:
* Normalized item popularity

* Normalized item
reconsumption ratio

* Recency feature
* Dynamic familiarity
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The extracted behavioral features are
highly related to repeat consumptions!
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In training, sample fixed number of
negative v; for each v; w.r.tu and t.

Train with SGD:

Algorithm 1. Parameter Inference Algorithm

Input:
learning rate «, regularization parameters y, A.
Output:
transform matrix A,, for each user u,
latent feature matrices U, V.
1: initialize A, ~ N(0, \I), Vu, U,V ~ N(0, yI)
2: repeat
3: uniformly draw a user u from user set U
4:  uniformly draw a repeat consumption of u w.r.t. item v;
at time ¢
5: uniformly draw item v; (v; # v;) from the time window of
w at time ¢
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11: until 7 convergence
12: return AU,V

Recommend by ranking with
temporal preference r,,
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EXperiments o=
= Datasets: Gowalla (repeat check-ins), Lastfm (repeat song listening). | |
= Superior accuracy performance of TS-PPR compared to baselines.
= Accuracy drops after eliminating any of the four extracted features. ! ijj:
= About 1ms time cost for a single recommendation with TS-PPR. oAt ==
Combine TS'PPR Wlth our Evaluation Combining STREC and TS-PPR .
previous Work [1] towards ) Data Set STREC TS-PPR (on STREC correct classification) 8
5 - MaAP@1 MaAP@5 MaAP@10
hOIIStIC recommender SyStem fOr Gowalla 0.6912 0.1343 0.4487 0.6314
\ repeat Consumptions Lastfm 0.8070 0.0862 0.2819 0.4336 :: — .
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