A Personalized Interest-Forgetting Markov Model for Recommendations

Jun Chen, Chaokun Wang, Jianmin Wang

Tsinghua University, China chenjun14@mails.tsinghua.edu.cn, {chaokun, jimwang}@tsinghua.edu.cn

28-Jan-15

Review on Forgetting Curve (FC)

A Personalized Interest-Forgetting Markov Model for Recommendations

Forgetting of User Interests

- Interest-Forgetting
 - User u's interest upon item x loses as time elapses after the consumption.
 - Importance to influence current user interest.
- Some issues
 - Modeling of interest-forgetting.
 - Personalization
 - Forgetting speeds
 - Starting experience
 - Re-learning/Reconsumption

Major Contributions

- 1. We considered the interest-forgetting in recommendations towards a "human-minded" recommender system.
- 2. A personalized framework for interest-forgetting Markov model with multiple implementations on experience and interest retention.
- 3. An effective solution to item recommendation problem compared with the state-of-the-art.

Related Works

Markov model & Recommendation

- First-order Markov chain model^[Rendle et al 2010, Cheng et al 2013].
- High-order Markov model^[Raftery 1985]
- Variable-order Markov models^[Begleiter et al 2004, Dimitrakakis 2010].
- Memory Forgetting & Learning
 - Forgetting models^[Ebbinghaus 1885, Nembhard et al 2001, Averell et al 2011].
 - Learning models^[Jaber et al 1997, Anzanello et al 2011]
 - Data filtering & updating^[Packer et al 2011, Freedman et al 2011]

Problem Formulation

- Variable-Order Markov (VOM) model based Recommendation
 - Given an item trace $\mathcal{X}^{u,t} = \{x_1^u, x_2^u, \dots, x_t^u\}$ of user u, recommend Top-N unseen items with the largest transition probability:

$$P(x|\mathcal{X}^{u,t}) = P(X_{t+1}^{u} = x|X_{t}^{u} = x_{t}^{u}, \dots, X_{1}^{u} = x_{1}^{u})$$

- Exponential expansion on the number of states
- λ-VOM
 - Step-wise weighted first-order Markov model $P(x|\mathcal{X}^{u,t}) = \sum_{j=1}^{t} \lambda_j^{u,t} P(X_{t+1}^u = x | X_{t+1-j}^u = x_{t+1-j}^u)$

Framework

λ-VOM

$$P(x|\mathcal{X}^{u,t}) = \sum_{j=1}^{t} \lambda_j^{u,t} P(x|x_{t+1-j}^u)$$

 $P(x|x_{t+1-j}^{u})$: one-step transition probability.

 $\lambda_i^{u,t}$: personalized interest-forgetting component.

$$\lambda_j^{u,t} = \Upsilon_{x_{t+1-j}^u}^{u,t} \Phi_{x_{t+1-j}^u}^{u,t}$$

◆ Starting Experience: Y_x^{u,t} ∝ f(x, u, t), monotonically increasing with frequency.
◆ Interest Retention: Φ_x^{u,t} ∝ 1/j, monotonically decreasing with elapsed time steps.

IFMM Framework

Objective

 Minimize the negative log-likelihood of the probabilities to recommend the last item in each training trace.

$$\Theta^* = \underset{\Theta}{\operatorname{argmin}} \mathcal{L} = -\sum_{u \in \mathcal{U}} \sum_{\mathcal{X}^{u,t} \in \mathcal{X}^{u}} \ln(P(x|\mathcal{X}^{u,t}))$$
$$= -\sum_{u \in \mathcal{U}} \sum_{\mathcal{X}^{u,t} \in \mathcal{X}^{u}} \ln(\sum_{j=1}^{t} \Upsilon_{x_{t+1-j}^{u,t}}^{u,t} \Phi_{x_{t+1-j}^{u,t}}^{u,t} P(x|x_{t+1-j}^{u})),$$
$$s.t. \quad 1 \leq \Upsilon_x^{u,t} \leq 2, 0 \leq \Phi_x^{u,t} \leq 1, 0 \leq P(x|x_{t+1-j}^{u}) \leq 1.$$

- Parameters Θ^{*} could be learned via stochastic gradient descent method.
- One-step transition probability can be directly computed.

Framework Specifications

One-Step Transition Probability

• Conditional probability of observing x_i after x_j .

$$P(x_i|x_j) = \frac{\sum_{u \in \mathcal{U}} \sum_{\mathcal{X}^{u,t} \in \mathcal{X}^u} \mathbb{1}_{\{x_j, x_i\} \subseteq \mathcal{X}^{u,t}}}{\sum_{u \in \mathcal{U}} \sum_{\mathcal{X}^{u,t} \in \mathcal{X}^u} \mathbb{1}_{x_j \in \mathcal{X}^{u,t}}}$$

Framework Specifications

- Starting Experience
 - Logistic function

$$\Upsilon_x^{u,t} = \frac{2}{1 + e^{-\phi_u f_{u,t}(x)}} \qquad (f_{u,t}(x) \ge 0, \phi_u \ge 0)$$

• Rational function (normalized frequencies) $\Upsilon_x^{u,t} = 1 + (f_{u,t}(x))^{\phi_u} \quad (0 \le f_{u,t}(x) \le 1, 0 \le \phi_u \le 1)$

Starting experience measures the personalized accumulative interest a user has upon a certain item before forgetting.

Starting Experience: $\Upsilon_x^{u,t} \propto f(x, u, t)$, monotonically increasing with frequency.

A Personalized Interest-Forgetting Markov Model for Recommendations

Framework Specifications

Interest Retention

- Log-Linear function^[Wright 1936] • $\Phi_{x_{t+1-j}^u}^{u,t} = C_u j^{-\alpha_u},$ $1 \le j \le t; 0 \le \alpha_u \le 1; 0 < C_u \le 1$
- Exponential function^[Knecht 1974]

 $\Phi_{x_{t+1-j}^u}^{u,t} = C_u j^{-\alpha_u} e^{-\beta_u j},$

 $1 \leq j \leq t; 0 \leq \alpha_u, \beta_u \leq 1; 0 < C_u \leq 1$

Hypobolic function^[Mazur and Hastie 1978]

$$\Phi_{x_{t+1-j}^{u,t}}^{u,t} = \frac{C_u}{j - \alpha_u}, 0 \le \alpha_u < 1, 0 < C_u \le 1$$

Interest retention measures the personalized residual interest of a user upon a certain item after forgetting.

Interest Retention: $\Phi_x^{u,t} \propto 1/j$, monotonically decreasing with elapsed time.

Personalized Recommendation

IFMM Framework

Top-N item recommendation with the largest values of $P(x|\mathcal{X}^{u,t})$.

Data Set

- Last.fm music listening data set.
- 992 users, 964,464 songs, 16,986,614 listening records.
- Partition each user's listening history with a time shreshold, e.g. 1 hour.
- Remove listening records whose duration is less than 30 secs.
- 80% traces for training, 20% traces for test.

Comparative Methods

- Markov model based
 - Factorizing Personalized Markov Chain (FPMC) [Rendle 2010, Cheng 2013]
 - Topic Sensitive PageRank (TSPR) [Haveliwala 2002]
- Graph-based preference fusion (STG) ^[Xiang 2010]
- Sequential pattern based (SEQ) [Hariri et al 2012]

Accuracy of the proposed methods

- Starting Experience
 - NM: rational function
 - NO: logistic function
- Interest Retention
 - LL: log-linear
 - EX: exponential
 - HY: hypobolic

NO+HY performs the best, and is selected as the representative.

itial - ic	Method	Top10	Top30	Top50	Top70	Top90	Top100
	NM+LL	0.3288	0.4163	0.4536	0.4756	0.4919	0.4983
	NM+EX	0.3335	0.4189	0.4553	0.4766	0.4924	0.4983
	NM+HY	0.3954	0.4573	0.4816	0.4962	0.5068	0.5113
•	NO+LL	0.3289	0.4164	0.4537	0.4757	0.4921	0.4984
	NO+EX	0.3345	0.4198	0.4557	0.4769	0.4927	0.4987
	NO+HY	0.3935	0.4573	0.4834	0.4991	0.5109	0.5154

Accuracy Comparisons

- NO+HY
- SEQ
 - -s5w4: sup 5, winsize 4
 - -s7w3: sup 7, winsize 3
 - -s6w2: sup 6, winsize 2
- FPMC
- STG
- TSPR

NO+HY improves 10%-20% in recommendation accuracy compared with the best of the reference methods.

- Personalized parameters distribution
 - NO+HY

$$\Upsilon_x^{u,t} = \frac{2}{1 + e^{-\phi_u f_{u,t}(x)}} \qquad (f_{u,t}(x) \ge 0, \phi_u \ge 0)$$
$$\Phi_{x_{t+1-j}^u}^{u,t} = \frac{C_u}{j - \alpha_u}, 0 \le \alpha_u < 1, 0 < C_u \le 1$$

A Personalized Interest-Forgetting Markov Model for Recommendations

Conclusions

- **Forgetting** is an intrinsic feature of human beings, and should be taken into account in recommender systems.
- We proposed λ -VOM to simplify the computation of variable-order Markov model.
- We brought forward a **personalized framework** which integrates interest-forgetting and Markov model.
- Multiple forgetting curve models and experience models have been evaluated under our framework to find an optimal solution.
- IFMM provides various strategies for **personalization**.
- The experimental results proved the effectiveness of our method in recommendation tasks.

Thank You ~ Any Question?

Jun Chen, Chaokun Wang, Jianmin Wang

Tsinghua University, China chenjun14@mails.tsinghua.edu.cn, {chaokun, jimwang}@tsinghua.edu.cn

28-Jan-15

Timeout Threshold

- Influence general length of traces.
- Larger value, longer traces.

Very slight impact upon the recommendation accuracy

