

User Novelty driven Personalized Item Recommendation

CHEN, Jun (陈俊)

PhD Graduate Tsinghua University

2017-12-01

Outline

- User novelty classification
- Repeat recommendation (*with low user novelty*)
- Novel recommendation (with high user novelty)
- Intransitive preference modeling (beyond a single angle of uesr novelty)

Background

□ In a conventional way to build RecSys

- □ Obtain user feedbacks, e.g., views/clicks/ratings.
- □ Fit data with a model, e.g. CF, MF, LTR, NN.
- □ Predict unseen items of potential user interests.
- □ Constraints: time, social relations, geo locations, etc.

□ Task in this study

Given user's previous consumption history with timestamps, predict what (s)he will consume next.

Predict
$$x_{t}^{u}$$
 s.t. $\{x_{1}^{u}, x_{2}^{u}, x_{3,...,}^{u}, x_{t-1}^{u}\}$

Some potential methods

- Markov Chain model
- Tensor factorization
- □ Neural networks for sequence learning (GRU/LSTM)

\square Regardless of user's intention on x_t^u

Background

□ In this study, user's intention matters

- □ In psychology, the *openness* in the *Big Five Personality Traits* model describes people's willingness to accept unknown things.
- □ *User novelty* as a metric of openness: low familiar, high novel.
- □ User's selection is a reflection of their **intentions**: repeat familiar items or explore novel items.

Problem breakdown

- A. User novelty classification
- B. Repeat recommendation (*low user novelty*)
- C. Novel recommendation (*high user novelty*)
- D. Intransitive preference modeling

ChenJun THSS

□ Motives

- □ Understand user's intentions of consumptions.
- Divide the candidate itemset for recommendations.

Problem

- □ Given the time window **W** of user *u*'s consumption behaviors before time *t*, predict whether *u* will choose the consumed items in **W** at *t*.
- □ User novelty: $P(x_t^u \notin \mathbf{W})$

Examples

- □ Given *u*'s recent playlist of songs **W**, predict if *u* will repeat listening to a song in **W** at next time step.
- □ Given the sequence of *u*'s recent POI check-ins **W**, predict if *u* will revisit a POI in **W** at next time step.

User Novelty driven Personalized Item Recommendation

In a binary classification scheme

Feature extraction

- A. Average normalized item popularity
- B. Average normalized item reconsumption ratio
- C. User reconsumption ratio
- D. Window repeat ratio

$$\begin{array}{ll} \mathbf{A.} \quad h_{IP}(v) = \frac{\ln(1 + freq(v))}{\max_{x \in \mathcal{V}} \ln(1 + freq(x))}, \quad h_{IP}(\mathbf{W}_{u,t}) = \frac{1}{|\mathbf{W}_{u,t}|} \sum_{v \in \mathbf{W}_{u,t}} h_{IP}(v) \\ \end{array}$$

$$\begin{array}{ll} \mathbf{B.} \quad h_{AIRR}(v) = \ln(1 + \frac{\sum_{u \in \mathcal{U}} \sum_{x_{t}^{u} \in \mathcal{X}^{u}} \mathbbm{1}_{x_{t}^{u} = v \land X_{t}^{u} \in \mathbf{W}_{u,t}}}{\sum_{u \in \mathcal{U}} \sum_{x_{t}^{u} \in \mathcal{X}^{u}} \mathbbm{1}_{x_{t}^{u} = v}} \right) \begin{array}{l} h_{IRR}(v) = \frac{h_{AIRR}(v)}{\max_{x \in \mathcal{V}} h_{AIRR}(x)} \\ h_{IRR}(\mathbf{W}_{u,t}) = \frac{1}{|\mathbf{W}_{u,t}|} \sum_{v \in \mathbf{W}_{u,t}} h_{IRR}(v) \\ \end{array}$$

$$\begin{array}{l} \mathbf{C.} \quad h_{URR}(u) = \frac{\sum_{x_{t}^{u} \in \mathcal{X}^{u}} \mathbbm{1}_{x_{t}^{u} \in \mathbf{W}_{u,t}}}{|\mathcal{X}^{u}|} \\ \\ \mathbf{D.} \quad h_{WRR}(\mathbf{W}_{u,t}) = 1 - \frac{|DS(\mathbf{W}_{u,t})|}{|\mathbf{W}_{u,t}|} \end{array}$$

ChenJun THSS

Given Secure Feature Significance

User Novelty driven Personalized Item Recommendation

In a binary classification scheme

Classifiers

Lasso classifier $Pr_{\mathcal{L}}(u,t) = \mathbf{w}^{T}\mathbf{x}_{u,t}$ $\operatorname{argmin}_{\mathbf{w}_{\mathcal{L}}^{*}} \mathcal{L}(\mathbf{w}) = \sum_{u \in \mathbf{U}} \sum_{t \in T_{u}} (\mathbf{w}^{T}\mathbf{x}_{u,t} - \mathbb{I}_{t \in W_{k}^{u,t}})^{2}$ $s.t. \sum_{i} \mathbf{w}_{i} = \mathbf{1}$ $\operatorname{argmin}_{\mathbf{w}_{\mathcal{L}}^{*}} \mathcal{L}(\mathbf{w}) = \sum_{u \in \mathbf{U}} \sum_{t \in T_{u}} (\mathbf{w}^{T}\mathbf{x}_{u,t} - \mathbb{I}_{t \in W_{k}^{u,t}})^{2} + \lambda \sum_{i} \mathbf{w}_{i}$ Quadratic classifier

$$\Pr_{Q}(u, t) = \sqrt{\mathbf{w}^{T} diag(\mathbf{x}_{u,t})^{2} \mathbf{w}}$$

$$\operatorname{argmin}_{\mathbf{w}_{Q}^{*}} \mathcal{Q}(\mathbf{w}) = \sum_{u \in \mathbf{U}} \sum_{t \in T_{u}} (\sqrt{\mathbf{w}^{T} diag(\mathbf{x}_{u,t})^{2} \mathbf{w}} - \mathbb{I}_{t \in W_{k}^{u,t}})^{2}$$

s.t. $\mathbf{w}^{T} \mathbf{w} = \mathbf{1}$

$$\operatorname{argmin}_{\mathbf{w}_{Q}^{*}} \mathcal{Q}(\mathbf{w}) = \sum_{u \in \mathbf{U}} \sum_{t \in T_{u}} (\sqrt{\mathbf{w}^{T} diag(\mathbf{x}_{u,t})^{2} \mathbf{w}} - \mathbb{I}_{t \in W_{k}^{u,t}})^{2} + \lambda \mathbf{w}^{T} \mathbf{w}$$

Experiments

Publish the ManicTime dataset

(https://github.com/chenjun082/manictime).

Average 80% accuracy on *Last.fm*,
 Gowalla, *BrightKite* and *ManicTime* dataset.

J. Chen, et al. Will you reconsume the near past? fast prediction on short-term reconsumption behaviors. **AAAI**, 2015.

ChenJun THSS

Motives

- Repeat consumptions are common
 - e.g. 77% in Last.fm [Kapoor, WSDM2015]
- □ Some people have *low user novelty* at sometimes.
- □ A lack of study in repeat recommendation.

Problem

- **\square** Precondition: *u*'s user novelty is low at time *t*.
- □ Given the time window **W** of user *u*'s consumption behaviors before time *t*, recommend items from **W** to *u* at time *t*.

Examples

- □ Recommend a preferred pop song listened several days before.
- □ Recommend a nice steak house visited months before.

Indeed, it is a ranking problem with implicit user feedback !

Bayesian Personalized Ranking

- \square *u*'s preference on *v*, $r_{uv} = \mathbf{u} \cdot \mathbf{v}$.
- Observed pairwise comparison $v_i >_u v_j$.
- $\square \text{ Maximize: } \Pi \sigma(\mathbf{u} \cdot \mathbf{v}_i \mathbf{u} \cdot \mathbf{v}_j) .$
- □ Estimate **u** for all users, **v** for all items.
- □ SGD on log loss.

Time Sensitive

- □ User's preference at each time step is different.
- Reconsumed v.s. non-consumed (temporal pairwise comparisons).
- Tensor factorization may not work since the latent factors of the next step is unknown.

How to capture user's preference for repeat consumption?

Time-Sensitive Personalized Pairwise Ranking

□ Incorporate time-sensitive features \mathbf{f}_{uvt} :

$$r_{uvt} = \mathbf{u}^{\top}\mathbf{v} + \mathbf{u}^{\top}\mathbf{A}_{u}\mathbf{f}_{uvt} = \mathbf{u}^{\top}(\mathbf{v} + \mathbf{A}_{u}\mathbf{f}_{uvt})$$

 \Box **f**_{*uvt*} is extracted from *u*'s previous interactions with *v* in **W**.

 \square **A**_{*u*} is a personalized feature space transform matrix.

 \square r_{uvt} balances *u*'s static and temporal preference on *v*.

D The probability of *u* preferring v_i to v_i :

ChenJun THSS

Time-Sensitive Personalized Pairwise Ranking

□ Objective (log loss with L-2 regularization):

$$\mathcal{J} = \sum_{(u,v_i,v_j,t)\in\mathcal{D}} -\ln p(v_i >_{ut} v_j) + \frac{\lambda}{2} \sum_{u} \|\mathbf{A}_u\|_F^2 + \frac{\gamma}{2} (\|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2)$$

- **Training with SGD.**
- Negative sampling
 - □ For each repeat consumption on v_i at time *t*, randomly sample *s* (e.g. 5) negative items v_i w.r.t. time window **W**.
- **\square** Recommend repeat items *v* by ranking with r_{uvt} .
- □ Codes: <u>https://github.com/chenjun082/ts-ppr</u>

Time-sensitive Features

- Normalized item quality
- Item reconsumption ratio
- □ <u>Recency feature</u>
- Dynamic familiarity

Experiments

□ Evaluation conducted on Last.fm and Gowalla datasets.

- 1. J. Chen, et al. Recommendation for repeat consumption from user implicit feedback. **IEEE TKDE** 2016.
- 2. J. Chen, et al. Recommendation for repeat consumption from user implicit feedback (Extended Abstract). **IEEE ICDE** 2017.

User Novelty driven Personalized Item Recommendation

Motives

- □ Some people have *high user novelty* at sometimes.
- One of the hottest topics in RecSys.
- □ Building a memory-aware RecSys is less explored before.

Problem

□ Given the time window W of user *u*'s previous consumptions before time *t*, recommend items to *u* at *t* regardless of previous consumptions or not.

Main contributions

- Modeling user's temporal interest on a given item as a process of *memory forgetting and enhancement* towards building an intelligent RecSys.
- Simplify the variable-order Markov Chain model with a weighted firstorder Markov Chain model.
 W_{ut}

Memory forgetting as a human nature

Ebbinghaus forgetting curve

More forgetting curves

User Novelty driven Personalized Item Recommendation

Interest-forgetting Markov model

□ In a conventional variable-order Markov model, the probability of consuming *v* at *t* is the *conditional probability* of all previous consumptions.

$$P(v|X^{u,t}) = P(v|x_{t-\Delta}^{u}, ..., x_{t-2}^{u}, x_{t-1}^{u})$$

□ The proposed (simplified) model,

$$P(v|X^{u,t}) = P(v|x_{t-\Delta}^{u}, ..., x_{t-2}^{u}, x_{t-1}^{u}) = \sum_{i=1}^{\Delta} P(v|x_{t-i}^{u})\lambda(u, t, i)$$

$$\boxed{x_{1} \ x_{2} \ \cdots \ x_{t}} \longrightarrow x_{t+1} \implies s_{um} = \sum_{i=1}^{\Delta} P(v|x_{t-i}^{u})\lambda(u, t, i)$$

D The forgetting and enhancement of interest is implanted in $\lambda(u, t, i)$,

$$\lambda(u,t,i) = \Phi(u,t,i) \Upsilon(u,t,x^u_{t-i})$$

Interest forgetting

To measure the interest retention Φ.
Log-linear, Φ = c_uΔt^{-α_u}
Exponential, Φ = c_uΔt^{-α_u}e^{-β_uΔt}
Hyperbolic, Φ = c_uΔt^{-α_u}
Personalized parameters to estimate
α_w, β_w, c_u

To measure the accumulative interest Logistic, Υ = 2/(1+e^-φ_u f(u,v,t)) Rational, Υ = 1 + f(u, v, t)^{φ_u} Personalized parameters to estimate φ_u

ChenJun THSS

One-step transition probability

□ Maximum likelihood estimation □ P(v/x) = f(v, x) / f(x)

Matrix factorization

$$\mathbf{P}(v|\mathcal{X}^{u,t}) = \sum_{i=1}^{\Delta} \mathbf{P}(v|x_{t-i}^{u})\lambda(u,t,i)$$

$$\underset{\mathbf{R},\mathbf{Q}}{\operatorname{argmin}} \sum_{\mathbf{P}[x,v]>0} (\mathbf{R}[x] \cdot \mathbf{Q}[v] - \mathbf{P}[x,v])^2 + \frac{\gamma}{2} (\|\mathbf{R}\|_F^2 + \|\mathbf{Q}\|_F^2)$$

$\Box \text{ Objective (log loss)}$ $\Theta^* = \underset{\Theta}{\operatorname{argmin}} \mathcal{L} = -\sum_{u} \sum_{\tilde{x}, X^{u, t}} \ln P(\tilde{x} | X^{u, t}; \Theta)$ $= -\sum_{u} \sum_{\tilde{x}, X^{u, t}} \ln \left(\sum_{i=1}^{\Delta} P(\tilde{x} | x^{u}_{t-i}) \Phi(u, t, i) \Upsilon(u, t, x^{u}_{t-i}) \right),$ s.t. $1 \leq \Upsilon(u, t, x^{u}_{t-i}) \leq 2, \ 0 \leq \Phi(u, t, i) \leq 1, \ 0 \leq P(\tilde{x} | x^{u}_{t-i}) \leq 1.$

GD training to get α_u , β_u , c_u and ϕ_u .

Recommend by ranking with $P(v|X^{u,t})$

Experiments

- □ Evaluation conducted on Last.fm dataset.
- □ Much higher accuracy in Top-*k* recommendations.

- 1. J. Chen, et al. A personalized interest-forgetting Markov model for recommendations. **AAAI** 2015, **oral presentation**.
- 2. J. Chen, et al. Modeling the interest-forgetting curve for music recommendation. **ACM Multimedia** 2014.

Chenjun TH

□ Motives

- □ The assumption of transitive preference is over-simplified sometimes.
- □ Intransitive preference was observed in pairwise comparisons^[Tversky, 1969].
- □ There lacks computational models for intransitive preference.

Problem

Given many pairwise comparisons $\{v_i >_u v_j\}$ (*intransitivity may exist*), find a function $f(u, v_x, v_y)$ that can predict if *u* prefers v_x over v_y or otherwise for an unseen triplet (u, v_x, v_y) .

Impact of intransitive preference models

- □ Transitive preference models (RankNet^[Burges, 2005], BPR^[Rendle, 2009], MF^[Koren, 2009]) fail due to the partial order of scalar preference values.
- □ A more complext comparison schema is required.
- □ Find the cause of intransitive preference.

Major argument

- □ User has different judging criteria for different pairwise comparisons.
- □ The different selections of judging criteria lead to intransitive preference.

□ Image as an example

- □ Judging criteria: colors, salience objects, theme, etc.
- If comparing A and B using colors, comparing B and C using salience objects, and comparing A and C using image theme, the pairwise comparison reults can be intransitive.
- □ What if more than one judging criterion are used in a single comparison?

ChenJun THS

D Multi-Criterion (MuCri) Preference Models

- **Main idea**: for a given (user, item) pair, compute multiple preference values with *multiple criteria* to form *a preference vector*.
- Latent MuCri (L-MuCri) Model
 - □ Represent a/an user/item with multiple **latent** vectors (*i.e. criteria*).

\square The Top-*F* criteria under which user *u* prefers item *a*.

$$\operatorname*{argmax}_{1 \le x \le D_{lt}}^{F_{lt}} \mathbf{u}_x^\top \mathbf{h}_x^a$$

 \square The joint set of criteria that *u* uses to compare item *a* and *b*,

$$\mathcal{C}_{uab}^{lt} = \left(\operatorname*{argmax}_{1 \le x \le D_{lt}} \mathbf{u}_x^\top \mathbf{h}_x^a \right) \cup \left(\operatorname{argmax}_{1 \le y \le D_{lt}} \mathbf{u}_y^\top \mathbf{h}_y^b \right)$$

□ *u*'s preference on item *a* when comparing *a* and *b* (may change when *u* compare *a* and *c* or others),

$$r_{ua|b}^{lt} = \frac{1}{|\mathcal{C}_{uab}^{lt}|} \sum_{x \in \mathcal{C}_{uab}^{lt}} \mathbf{u}_x^\top \mathbf{h}_x^a$$

User Novelty driven Personalized Item Recommendation

Multi-Criterion (MuCri) Preference Models

\square The probability of *u* preferring *a* to *b* in pairwise comparison,

$$p_{lt}(a >_u b) = \frac{e^{r_{ua|b}^{lt}}}{e^{r_{ua|b}^{lt}} + e^{r_{ub|a}^{lt}}} = \frac{1}{1 + e^{-(r_{ua|b}^{lt} - r_{ub|a}^{lt})}}$$

□ An illustration

User Novelty driven Personalized Item Recommendation

Multi-Criterion (MuCri) Preference Models

□ Objective,

$$\mathcal{O} = \sum_{u} \sum_{(a,b)\in\mathcal{R}_{u}} -\ln p(a >_{u} b) + \frac{\lambda}{2} (\|\mathbf{U}\|_{F}^{2} + \|\mathbf{H}\|_{F}^{2}) + \frac{\gamma}{2} \|\hat{\mathbf{U}}\|_{F}^{2}$$

Content-based MuCri (C-MuCri) Model

 \Box **f**^a are the extracted content features of item *a*.

□ For images, we extracted RGB, SIFT, GIST, LBP and deep features.

$$C_{uab}^{ct} = (\operatorname*{argmax}_{1 \le x \le D_{ct}} \hat{\mathbf{u}}_x^{\mathsf{T}} \mathbf{f}_x^a) \cup (\operatorname{argmax}_{1 \le y \le D_{ct}} \hat{\mathbf{u}}_y^{\mathsf{T}} \mathbf{f}_y^b)$$

Hybrid MuCri (H-MuCri) Model

Max:
$$p(a >_u b) = max(p_{lt}(a >_u b), p_{ct}(a >_u b))$$
Mean: $p(a >_u b) = \frac{1}{2}(p_{lt}(a >_u b) + p_{ct}(a >_u b))$
Product: $p(a >_u b) = p_{lt}(a >_u b)p_{ct}(a >_u b)$

Codes: <u>https://github.com/chenjun082/mucri</u>

Evaluation

□ Publish a new pairwise scenery image comparison dataset (INRIA Holidays).

https://github.com/chenjun082/holidays

Accuracy performance

Data Sets	Models	Accuracy			AUC		
		2-fold	5-fold	10-fold	2-fold	5-fold	10-fold
INRIA Holidays	BRP [14] GBPR [15] BC-Inner [27] BC-Dist [27] L-MuCri C-MuCri	$\begin{array}{c} 0.7436 {\pm} 0.0047 \\ 0.7167 {\pm} 0.0134 \\ 0.7291 {\pm} 0.0030 \\ 0.7152 {\pm} 0.0050 \\ \end{array}$	$\begin{array}{c} 0.7488 \pm 0.0088 \\ 0.7319 \pm 0.0094 \\ 0.7327 \pm 0.0119 \\ 0.7173 \pm 0.0038 \end{array}$	$ \begin{vmatrix} 0.7497 \pm 0.0152 \\ 0.7334 \pm 0.0192 \\ 0.7404 \pm 0.0120 \\ 0.7244 \pm 0.0193 \\ \end{vmatrix} \\ 0.7832 \pm 0.0110 \\ 0.7842 \pm 0.0107 \\ \end{vmatrix}$	$\begin{array}{c} 0.7408 \pm 0.0044 \\ 0.7138 \pm 0.0123 \\ 0.7267 \pm 0.0030 \\ 0.7137 \pm 0.0058 \end{array}$	$\begin{array}{c} 0.7463 \pm 0.0092 \\ 0.7289 \pm 0.0109 \\ 0.7306 \pm 0.0127 \\ 0.7148 \pm 0.0035 \\ \end{array}$	$\begin{array}{c} 0.7465 \pm 0.0158 \\ 0.7310 \pm 0.0196 \\ 0.7378 \pm 0.0118 \\ 0.7217 \pm 0.0194 \\ \end{array}$
	H-MuCri-Max H-MuCri-Mean H-MuCri-Prod	$\begin{array}{c} 0.7535 {\scriptstyle \pm 0.0013} \\ \textbf{0.7746} {\scriptstyle \pm 0.0071} \\ 0.7690 {\scriptstyle \pm 0.0100} \end{array}$	$\begin{array}{c} 0.7686 {\pm} 0.0026 \\ 0.7896 {\pm} 0.0100 \\ \textbf{0.7927} {\pm} 0.0064 \end{array}$	$\begin{array}{c} 0.7708 \pm 0.0130 \\ 0.7902 \pm 0.0101 \\ \textbf{0.7905} \pm 0.0076 \end{array}$	$\begin{array}{c} 0.7520 {\pm} 0.0017 \\ 0.7732 {\pm} 0.0071 \\ \textbf{0.7758} {\pm} 0.0033 \end{array}$	$\begin{array}{c} 0.7672 \pm 0.0026 \\ \textbf{0.7880} \pm 0.0096 \\ 0.7858 \pm 0.0105 \end{array}$	$\begin{array}{c} 0.7690 {\pm} 0.0132 \\ 0.7887 {\pm} 0.0113 \\ \textbf{0.7890} {\pm} 0.0082 \end{array}$
Aesthetics	BRP [14] GBPR [15] BC-Inner [27] BC-Dist [27]	$\begin{array}{c} 0.7159 \pm 0.0018 \\ 0.7059 \pm 0.0004 \\ 0.6795 \pm 0.0029 \\ 0.6788 \pm 0.0009 \end{array}$	$\begin{array}{c} 0.7243 \pm 0.0072 \\ 0.7104 \pm 0.0034 \\ 0.6859 \pm 0.0024 \\ 0.6786 \pm 0.0018 \end{array}$	$\begin{array}{c} 0.7250 \pm 0.0112 \\ 0.7116 \pm 0.0030 \\ 0.6881 \pm 0.0051 \\ 0.6787 \pm 0.0067 \end{array}$	$\begin{array}{c} 0.7158 {\pm} 0.0018 \\ 0.7059 {\pm} 0.0003 \\ 0.6795 {\pm} 0.0028 \\ 0.6785 {\pm} 0.0010 \end{array}$	$\begin{array}{c} 0.7242 {\pm} 0.0072 \\ 0.7103 {\pm} 0.0034 \\ 0.6858 {\pm} 0.0025 \\ 0.6783 {\pm} 0.0018 \end{array}$	$\begin{array}{c} 0.7248 \pm 0.0112 \\ 0.7115 \pm 0.0030 \\ 0.6880 \pm 0.0050 \\ 0.6783 \pm 0.0067 \end{array}$
	L-MuCri C-MuCri H-MuCri-Max H-MuCri-Mean H-MuCri-Prod	$\begin{array}{c} \textbf{0.7789} {\scriptstyle \pm 0.0011} \\ 0.7222 {\scriptstyle \pm 0.0002} \\ 0.6079 {\scriptstyle \pm 0.0006} \\ 0.7748 {\scriptstyle \pm 0.0003} \\ 0.7744 {\scriptstyle \pm 0.0002} \end{array}$	$\begin{array}{c} \textbf{0.7997} {\scriptstyle \pm 0.0031} \\ 0.7469 {\scriptstyle \pm 0.0079} \\ 0.6179 {\scriptstyle \pm 0.0032} \\ 0.7937 {\scriptstyle \pm 0.0029} \\ 0.7960 {\scriptstyle \pm 0.0021} \end{array}$	$\begin{array}{c} \textbf{0.8052} {\scriptstyle \pm 0.0044} \\ 0.7504 {\scriptstyle \pm 0.0081} \\ 0.6174 {\scriptstyle \pm 0.0111} \\ 0.8005 {\scriptstyle \pm 0.0039} \\ 0.8012 {\scriptstyle \pm 0.0048} \end{array}$	$\begin{array}{c} \textbf{0.7788} {\scriptstyle \pm 0.0011} \\ 0.7222 {\scriptstyle \pm 0.0002} \\ 0.6078 {\scriptstyle \pm 0.0006} \\ 0.7747 {\scriptstyle \pm 0.0002} \\ 0.7743 {\scriptstyle \pm 0.0002} \end{array}$	$\begin{array}{c} \textbf{0.7997} {\scriptstyle \pm 0.0031} \\ 0.7469 {\scriptstyle \pm 0.0079} \\ 0.6175 {\scriptstyle \pm 0.0030} \\ 0.7937 {\scriptstyle \pm 0.0029} \\ 0.7960 {\scriptstyle \pm 0.0020} \end{array}$	$\begin{array}{c} \textbf{0.8052} {\scriptstyle \pm 0.0045} \\ 0.7504 {\scriptstyle \pm 0.0081} \\ 0.6173 {\scriptstyle \pm 0.0109} \\ 0.8005 {\scriptstyle \pm 0.0039} \\ 0.8011 {\scriptstyle \pm 0.0048} \end{array}$

User Novelty driven Personalized Item Recommendation

Evaluation

Users' top preferred latent or content criteria in pairwise image comparisons.

Chenjun THSS

More information

- <u>https://github.com/chenjun082/mucri</u>
- <u>https://github.com/chenjun082/holidays</u>
- □ J. Chen, et al. Learning the personalized intransitive preferences of images. **IEEE Transactions on Image Processing**, 26(9), 2017.
- □ J. Chen, et al. Modeling the intransitive pairwise image preference from multiple angles. ACM Multimedia, 2017.

User Novelty driven Personalized Item Recommendation

CHEN, Jun (陈俊)

PhD Graduate Tsinghua University

2017-12-01